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A useful transformation for comparing 
dose-response curves 
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Several mathematical equations have been tested for their ability to fit 
pharmacological dose-response curves over the range 5 to 95 % of 
the maximal response. It has been shown that one such equation, 
which will be called the L-transformation, adequately fits sets of dose- 
response data obtained from a number of different tissues. The 
graphical application of this equation has been suggested previously 
by other workers but has been used only to a very limited extent. 

Techniques have now beea developed which enable the Gtrans- 
formation to be fitted to single sets of dose-response data, and to 
pairs of sets of data simultaneously. By itself the Gtransformation 
cannot adequately fit all dose-response curves. However if another 
preliminary transformation is camed out on the measured responses 
then the L-transformation can usefully be applied to dose-response 
curves of widely different shapes and slopes. Various applications 
of these techniques are discussed. When the Gtransformation is 
applied to pairs of dose-response curves obtained, for example, 
from a single piece of isolated tissue, it can be used to calculate pot- 
ency ratios, with standard errors and fiducial limits. When com- 
bined with the occupation theory of drug action and use of the null 
method, the Gtransformation can be applied to suitable pairs of 
dose-response curves to provide estimates of the affinity constants 
(with their standard errors) of drugs for their receptors. The tech- 
niques can be extended to other models of drug-receptor interaction. 
Computer programs are available which greatly facilitate the appli- 
cation of these curve fitting methods to the types of problem out- 
lined above. 

The results obtained from pharmacological experiments frequently can be summarized 
in the form of dose-response or log dose-response curves which are then used to obtain 
information about changes in the properties of the biological system or about the drug 
being studied. Such information is usually derived from pairs of log dose-response 
curves by graphical methods, unless the curves are parallel. In the latter case the 
slopes and intercepts of the linear region of the log dose-response curves may be calcu- 
lated directly from suitable data to yield information about changes in tissue sensitivity, 
potency ratios of full agonists or affinity constants of competitive antagonists. 

However the linear log dose transformation usually can be used only to describe dose- 
response data over a limited range of response (e.g. 30-70 % of maximal). Parker & 
Waud (1971) used a logistic function to fit theoretical curves over a much wider range 
of responses. They have emphasised the weaknesses of simple graphical techniques 
for analysing sets of dose-response data and have employed the logistic function to 
estimate affinity constants of agonists, partial agonists and competitive antagonists for 
their receptors (Parker & Waud, 1971 ; Waud & Parker, 1971). 

In the present paper an alternative method is presented for the analysis of dose- 
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response data, which seems to be simpler in principle than that used by Parker and 
Waud and is based on the use of a different type of transformation. The most useful 
example of this type of transformation seems to be that suggested by Kirschner & 
Stone (1951) and subsequently used, in a slightly modified form, by Ariens, van 
Rossum & Koopman (1960). 

THEORETICAL BASIS A N D  USE O F  THE L-TRANSFORMATION 

1. The choice of transformation 
Several transformations of the general form 

.. .. .. .. 1 

have been tested for their ability to fit theoretical curves to sets of dose-response data. 
In equation 1, F(r) is a function of the response r, Cr is the concentration of agonist 
which produces the response and a and b are adjustable constants. This type of 
transformation was chosen because it has special properties which will become clear 
later. The functions F(r) which have been tested are log (1 + Kr), (r + L) and rN 
where K, L and N are also adjustable constants. Of these three transformations, that 
with F(r) equal to (r + L) has been found to be the most flexible. This transfor- 
mation, which for the sake of brevity will be called the L-transformation, will there- 
fore be the only one discussed. 

2. Special properties of the L-transformation 
It will be shown in this section that if, by appropriate choice of the adjustable 

constants a, b and L, the L-transformation adequately fits one set of dose-response 
data then under appropriate conditions it would also be expected to fit other sets of 
dose-response data obtained on the same piece of isolated tissue. Although the values 
of a and b required to obtain a good fit for these other sets of data may differ from 
those required for the first set, the values of L required should not be significantly 
different. 

(a) Relative potencies 
Suppose that the equation l/(r + L) = a, + bJ(A)r has been shown to fit ade- 

quately a set of dose-response data obtained for an agonist acting on a suitable 
biological system. (A)r is the concentration of agonist A which produces response r. 
If another agonist B is x times as potent as A then the concentration of A required to 
produce any chosen response is x times the concentration of B required to produce the 
same response. The above equation may then be written in terms of the concentration 
of B as 

l/(r + L) = a, + bl/[x(B)d 

= a, + b,/(B)r 

where a, = a,, bl/x = b, and L is unchanged. The relative potency of the two 
agonists is x = b,/b,. 

Estimation of relative potency by use of the L-transformation therefore has the 
characteristics of a slope-ratio assay (see Finney, 1964). The variance of x and its 
fiducial limits can be estimated from the variances and covariances of b, and b,. The 
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condition that the values of a and L should not differ significantly for the two sets of 
dose-response data is the counterpart of the condition of parallelism normally applied 
in parallel line assays. 

(b) The null method and occupation theory 
The L-transformation, and other transformations of the same general form, can be 

combined with the standard equations derived by applying the null method to the 
occupation theory of drug action. The various assumptions made in deriving these 
standard equations have been discussed in reviews by Mackay (1966) and Waud (1968). 
The nomenclature used here will be mainly that of the former reference. 

Suppose again that the L-transformation adequately fits a set of dose-response data 
obtained for an agonist A acting, for example, on a piece of isolated tissue. A second 
dose-response curve might then be obtained on the same piece of tissue using, for 
example : 

(i) a different agonist B, 
(ii) the same agonist A, but in the presence of either a competitive or non- 

(iii) the same agonist A in the presence of a pseudo-irreversible antagonist, 
competitive reversible antagonist, 

or (iv) the same agonist A after irreversibly inactivating some of the receptors in the 

In each of these examples application of the null method to occupation theory, with 
tissue. 

various assumptions, yields an equation of the general form 

where Clr and Czr are the concentrations of agonist required to produce the same 
response r during the estimation of the first and second sets of dose-response data 
respectively. Depending on which of the examples (i) to (iv) is being studied these 
two sets of dose-response data may be obtained using a single agonist or using two 
different agonists. The meaning of the constants a and also varies with the example 
being considered. 

According to occupation theory the two sets of dose-response data are interrelated. 
For the first set we have for any chosen value of the response, 

b 
- a, + -' 

r + L  C1, 
- -  1 

B 
= a, + bi (a + -), from equation 2 

c 2 r  

.. . .  b2 
c 2 r  

= a , + -  .. .. .. 3 

.. 3a 

.. .. 3b 

where a, = a, + bla, . .  .. . .  .. .. .. .. 
b2 = bJ3, .. .. .. .. .. . .  .. 

and the value of L is unchanged. 
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It may therefore be stated that if the L-transformation adequately Jits the first set of 
dose-response data then it should also adequatelyfit the second get of data with the same 
value of L. 
If the above statement is found to be incorrect then either the basic model is not 
applicable to the data or some of the assumptions are invalid. For example the 
stimulus-response relation may have changed during the experiment. (The concept 
of such a relation was introduced by Stephenson (1956). For a general discussion of 
these ideas see e.g. Mackay (1966)) 

The above principles can be applied to examples (i) to (iv) outlined above so as to 
derive information from the values of a,, b,, a2, b, and L estimated from suitable pairs 
of sets of data. For example, for competitive antagonism equation 2 takes the form 

1 1 .. .. 4 

where (A)r and (A); are the concentrations of agonist A required to produce the same 
response r from a single piece of tissue in the absence and in the presence of a con- 
centration (I) of the competitive antagonist. K, is the affinity constant of the antagon- 
ist for its receptors. Comparison of equations 2 and 4 shows that for this example 
a = 0 and /3 = [l + K,(I)], so that from equations 3a and 3b a, = a, and b, = 
b, [l + &(I)]. Therefore if an antagonist is competitive and if the L-transformation 
adequately fits the dose-response data for the agonist alone then 

(a) the L-transformation should also adequately fit the dose-response data for the 

(b) neither the values of L nor the values of a from the two sets of data should be 

agonist in the presence of a constant concentration of the antagonist, 

significantly different, 

(d) the variance of K, may be estimated from the variances and covariance of bl and 

The appropriate equations for calculating affinity constants (and related quantities) 
of agonists, partial agonists and antagonists for their receptors, from values of a,, b,, 
aB and bB, can be obtained in a similar way and are presented in Table 1. Since the 
value of L should not be significantly different for any two sets of dose-response data 
which are being compared, the L-transformation should first be fitted to each set of 
data and then simultaneously to the two sets of data with a common value of L. The 
variances and standard errors of the affinity constants and,related quantities can then 
be obtained from the variances and covariances of a,, b,, a, and b, using standard 
statistical methods (see Appendix 2). 

be. 

3. Method offitting the L-transformation to a single dose-response curve 
The mathematical basis of the curve fitting technique is given in Appendix 1. A 

computer program (SLFIT) has been prepared which estimates those values of a, b, 
and L which minimize the sum of the squares of the deviations of the theoretical 
responses from the observed responses. The standard errors (s.e.’s) of a, b and L are 
also calculated. 
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The program has been written for sets of results which consist of equal numbers 
(NR) of responses measured at each concentration of agonist. If NR is greater than 1 
then the program prints out the mean sum of squared deviations within groups and the 
mean sum of squared deviations about regression. A variance ratio test can then be 
used to test the goodness of fit. Facilities are also included for removal of variance 
due to changes in tissue sensitivity with time, if the doses of agonist are applied in a 
random block or Latin square design. Such facilities are selected by inserting 
appropriate code numbers along with the experimental data. 

4. Method of fitting the L-transformation simultaneously to two dose-response curves, 
with a common value of L 

The mathematical basis of this curve-fitting procedure is given in Appendix 2, and is 
closely related to that used for fitting the L-transformation to a single set of dose- 
response data. The appropriate computer program, named DLFIT, estimates those 
values of the adjustable constants a,, bl, a,, b, and L which produce a minimum value 
for the sum of squared deviations of the theoretical responses from the observed 
responses. The theoretical responses are given by the equations 

1 bl 
r + L  C1, 
- = a, + - for the first set of data, 

b2 
r + L  c 2 r  

= a2 + - for the second set of data. 
1 

The summation of the squared deviations is over both sets of dose-response data. The 
program DLFIT also provides estimates of the variances and covariances of these 
adjustable constants. Since a common value of L is fitted to both sets of dose- 
response data the values of the adjustable constants will usually differ from those 
obtained by fitting the L-transformation to each individual set of data. 

As in the case of SLFIT, the program DLFIT provides facilities for the removal of 
variance arising from variation of tissue sensitivity with time, provided that the experi- 
mental design justifies such a procedure. 

5 .  Limitations of the L-transformation, and methods of extending its use 
The L-transformation has been shown to fit experimental data obtained from a 

number of tissues including the ileum, vas deferens and atrium of the guinea-pig. It 
has also been shown to fit published dose-response curves obtained for contraction of 
the rectus abdominis muscle of the frog, and for depolarization of the electroplax of the 
electric eel. However the L-transformation does not fit alZ types of dose-response 
curves. For example dose-response curves obtained with guinea-pig trachea have been 
too steep, and there may be other dose-response curves which are too shallow. 

If L is set equal to zero then the L-transformation takes the same form as the 
Michaelis-Menten equation, and can be rearranged to give 

1 - r -- 
  MAX 1 4  .. .. .. 5 

+ c-0 

where rMax is the maximal response produced by the drug and C50 is the concentration 
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of the drug which produces half of the maximal response. If r/rMAX is plotted against 
log [Cr/C50] then a single standard curve is obtained as shown in Fig. la. The adjust- 
able constant L in the L-transformation may also have positive or negative values, 
which when added to the observed responses lead to a curve similar to that shown in 
Fig. la. Thus changing the sign of L has the effect of cutting off or adding to the 
lower part of the standard S-shaped curve as shown in Fig. lb. It is therefore clear 
why adjusting the value of L allows the transformation to be applied to somewhat 
distorted S-shaped log dose-response curves with slopes lying only within a limited 
range. 

Log [Cr l  

FIG. la. The equation for the L-transformation reduces to r / r u  = 1/[1 + l/(Cr/C50)] if the 
value of L is set equal to zero. In this special case a plot of r/rmx versus log [Cr/CSOJ gives the 
symmetrical S-shaped curve shown above. r is the observed response and r m  is the maximal 
observed response. 

lb. The symmetrical S-shaped curve, with the zero-response axis at position 2, corresponds to  
the special case when the value of L, in the equation for the L-transformation, is zero. When L is 
not zero the effect on the appearance of a plot of observed response versus log [Cr] is as though the 
zero-response axis had been moved, for example, upwards to position 1 (L positive) or downwards 
to position 3 (L negative) as indicated by the arrows. 

Fortunately this limitation of the L-transformation is not as serious as might appear 
at first sight. The derivation of useful information from comparison of dose- 
response curves depends on the use of the null method, whether the data is being used 
to estimate a potency ratio or for the study of drug-receptor interactions. The 
essential point about equations derived by use of the null method is that they can be 
applied either to undistorted responses, or to distorted responses provided that both 
sets of responses being compared have been subjected to the same distortion. The 
situation is essentially the same as if a single non-linear recording system was used to 
measure both sets of responses. 

The idea of a distortion function can therefore be introduced, the purpose of this 
function being deliberately to change the shape of an observed dose-response curve. 
Such a distortion function may be of the general form 

 MA MAX = s + ~(~oBs/~MAX) + u(roBs/r~Ax>~ + v(~oBs /~MA~ '  + - . .. 6 

where r is the new distorted or modified response, rOBS is the original measured 
response, and s, t, u, v etc. are adjustable constants. In order to extend the applica- 
tion of the L-transformation it is desirable that the distorted responses should 
approximately fit equation 5,  so that they can then be adequately fitted by the 
L-transformation. 
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FIG. 2a. 
of a full agonist on an isolated tissue. The responses are in arbitrary units. 

2b. 

The dose-response curve shown above is assumed to have been obtained from the action 

In the above eranh the results shown in Fie. 2a have been dotted in the standardized form 
roBs/rya versus IO~,JC;/CSO]. 

Figs la and 2b respectively, and plotted one against the other as shown above. 

- 
2c. For chosen values of [C,/CSO], values of r/rM-a and of rOBS/rM.= have been read from 

Suppose that the single set of dose-response data shown in Fig. 2a has been obtained 
from the action of a full agonist on an isolated tissue. If rMAX is known or can be 
estimated with reasonable accuracy then C50 can also be estimated and the observed 
responses, as percentages of rMA)(, can be plotted against 10g,,[Cr/C50] (see Fig. 2b). 
It is then possible to read from the standard curve (Fig. la) those values of r/rMAx and 
from Fig. 2b those values of rOBs/rM, which correspond to the experimental values of 
C,/C50. A plot of r/rMAX versus roBS/rMAX then gives a curve (Fig. 2c) which 
corresponds to the distortion function. By fitting equation 6 to the results shown in 
Fig. 2c the values of the adjustable constants s, t, u and v can be obtained. If the L- 
transformation is applied to the dose-response data using the modified responses in 
place of the observed responses then ideally a good fit should be obtained with a value 
of L not significantly different from zero. In practice the estimates of rMAX and of 
C50 may be inaccurate, but even then the L-transformation should have a sufficient 
degree of flexibility to fit the set of modified dose-response data, with a non-zero value 
of L. 

The complete process described above is very nearly the same as fitting a transforma- 
tion of the form 

. .  .. 7 

to the unmodified experimental data. Were this to be done for each set of dose- 
response data then a large number of concentrations of drug would have to be used in 
each experiment. 

If one log dose-response curve, obtained from a chosen full agonist acting on recept- 
ors in a single piece of isolated tissue, is either too steep or too shallow adequately to 
be fitted by the L-transformation then it is likely that the same situation will arise with 
other samples of the same tissue, the various log dose-response curves having fairly 
similar shapes when the responses are expressed as percentages of rM,. The implicit 
assumption behind such a statement is that the stimulus-response relations for the 
samples of tissues are likely to be of the same general form. In such a case a single 
distortion function should be determined from a detailed set of dose-response data 

b 
(Ah 

-=a+- 1 
g + hr + ir2 + jr3 . . etc 
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obtained for a full agonist acting on an “average” piece of the tissue. A full agonist 
is chosen because it will cover the widest possible range of responses. This distortion 
function may then be applied to modify the responses obtained when agonists act on 
the same receptors in other samples of the tissue. Such “8’ distortion function esti- 
mated from one piece of tissue might be that shown in Fig. 2c. Suppose now that two 
sets of dose-response data to be compared have been estimated on a second piece of 
the same tissue from the same or from a different animal. An example is shown in 
Fig. 3a. These responses are then converted to percentages of rMAx which is the 

150 

r 
100 

50 

* O O r - - - - - -  

c 

- 

- 

- 

I 

-7.0 -60 -50 
Logicr 1 

Fro. 3a. The two log dose-response curves shown in this figure are assumed to have been obtained 
using two drugs A and B on a sample of tissue of the same type as that used to obtain the data 
shown in Fig. 2c. 

3b. The curves shown in Fig. 3a have been re-plotted so that the responses are expressed as 
percentages of the maximal response to a full agonist. 

3c. For each value of ross/r- corresponding to an experimental value of log [Cr] a come 
sponding value of r/r- has been read from Fig. 2c and converted to a value of r, knowing r m  
for the tissue. In this figure the values of these modified responses, r, have been plotted versus 
log,,[Cr]. Compare this figure with Fig. 3a. 

maximal response obtained when a full agonist acts on the same receptors in the tissue. 
The estimation of r M m  must be carried out in the absence of any other drugs and 
before treatment with any drugs which may produce irreversible changes in the tissue. 
The resulting plot of roBs/rMm versus log Cr is shown in Fig. 3b. From the distortion 
function (Fig. 2c) values of r/rW are read off for each value of rOBs/rMm, and con- 
verted to values of r. A plot of the modified response versus log Cr is shown in Fig. 
3c. These sets of distorted responses can then be fitted by means of the Gtransforma- 
tion and analysed in the same way as for unmodified sets of dose-response data. 
In practice the procedures described in this section are carried out by a computer 

program named RMOD, which can be used either to obtain a suitable distortion 
function from a single set of dose-response data or to obtain modified responses from 
observed responses if the distortion function is supplied. Of course the same distor- 
tion function and the same value of rux must be used for each set of the pair of sets 
of dose-response data being compared. 
6. Extension of the general principle of the L-transformation to other situations 

The general principles of the techniques outlined in the preceding sections can be 
applied to any adequate transformation of the type given in equation 1 provided that 
F(r) is a function only of r with adjustable constants (cf. equation 7). An important 
assumption made in the derivation of the null equations presented in Table 1 is that 
only one molecule of drug interacts with each receptor. If n molecules of drug inter- 
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Table 1. Relation between equations obtained by application of the null method to 

occupation theory, and the a4ustabIe constants of the L-transformation. 

Nature of experimental results Null equation Relation between the 
required experimental 
quantity and the adjustable 
constants of the 
L-transformation 

(i) Dose-response data for two agonists on 1 1 (Ah = IAB + $Am * - 
(B)r 

the aame piece of tissue 

where IAB = KA[PAa -11. 1, - [a1 - a J b t  
Also KS = [a. - aJ/b, 
if 1. 

KA 
$AS = DAB 

If A and B are full agonists then IAm - 0. 

KX = g: - 11 10; (ii) Dose-response data for an agonist in the 1 1 
absence and in the presence of a - * [1 + KIOI 
competitive antagonist 

(iii) Dose-reapon? data for an agonist in the 1 1 
absence and in the presence of a non- 
competitive or pseudo-irreversible 
antagonist 

(A), = 11 + K m I  + KAKIO K, = [$ - 1110 

K, = [a, - a J / h  - bJ. 

(iv) Dose-response data for an agonist before 1 1 1 YI 
and after treatment of a tissue with an 
irreversible or pseudo-irreversible 
antagonist 

(A)r = o\x’ . 1- i- KA- [ G j  KA = [as - aJl[b: - bJ 
YX - 1 - bib:. 

Footnote: in the above table KA and K. are the affinity constants of agonists A and B, for their receptors. BAS h the ratio 
of the intrinsic efficacy of drug A to that of drug B. K is the a w t y  constant of an antagonist for its rcceptor 
and yx is the fraction of receptors occupied by antagonist. 8%. bl, a, and b, are adjustable constants obtained by 
fitting the Gtransformation simultaneously to the two sets of dose-response data Wig compared. 

act with each receptor in a highly cooperative way then application of the null method 
to such a modified occupation model would lead to an equation of the same form as 
equation 2 but with concentrations raised to the power n. If there were good reasons 
to assume that such a model might be valid then one could look for a suitable transfor- 
mation of the type shown in equation 1 but with Cr raised to the power n. This could 
then be combined with the modified version of equation 2 to yield information in a way 
analogous to that described above. 

A model of drug-receptor interaction which is of particular interest as an alternative 
to occupation theory, is the allosteric 2-state receptor model proposed by Karlin (1967) 
and by Changeux, Thitry & others (1967). The null method has been applied to this 
model by Thron (1973) and by Colquhoun (1973). The resulting null equations are in 
most cases indistinguishable in form from those derived on the basis of the occupation 
model. This conclusion can also be reached concerning several other alternative 
models of drug-receptor interaction. The L-transformation should therefore be use- 
ful for deriving information from dose-response data, provided that any one of these 
models describes the interaction of a drug with its pharmacological receptors. 

7. Use of the computer programs based on the principles set out in the previous sections 
A brief summary of the input, function and output of each program is given in 

Table 2. Since each program can carry out several alternative processes these have to 
be specified for each set of dose-response data by means of code numbers. For 
example, one code number indicates whether a set of input data for program FINCALC 
is to be used to estimate a potency ratio, or to estimate the affinity constant of an 
agonist or antagonist. 
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Table 2. Outline of technique employed when applying the computer programs to  
analyse experimental data. 

Input 
or In 

[usually on cards, 
storage file]. 

tape, Program 
applied 
to input 

Code numbers followed by a RMOD 
theoretical value of t ,  
antagonist concentration, 
maximal response, agonist 
concentrations, responses, 
and either (a) C50,. or 
(b) details of the distortion 
function. 

Code numbers followed by a SLFIT 
theoretical value o f t ,  
antagonist concentration, 
approximate value of 
maximal response, agonist 
concentrations and 
responses, for each set of 
dose-response data 

Code numbers followed by a DLFIT 
theoretical value of t ,  
antagonist concentration, 
values of a b and L, 
agonist corktrat ions and 
responses for each set of 
dose-response data 

Code numbers, followed by a FIN- 
theoretical value of t ,  CALC 
antagonist concentration, 
values of a;. b,, a! and b, 
together with their 
variances and covariances 

Function of ’ program output 1 
Detailed output [either 
printed or put into storage 
file] 

output 2 
Condensed output 
[into storage file] 

Either Depending on the code (a) None 

adjustable constants of a 
suitable distortion function 
or distortion function SLFIT 
(b) to calculate the or 
corresponding modified 
responses, if the distortion 
function is supplied 

To estimate those values of Details of the various steps 
the adjustable constants, of the fitting procedure, 
a, b and L which give the together with the final 
best fit of the results 
L-transformation for each 
set of dose-response data 

(a) LO estimate the numbers. either or 
(a) best values of the 
adjustable constants of the 

(b) suitably modified responses 

(b) output in same 
form as input to 

Output in same form 
as input to DLFIT 

To estimate, for each pair 
of sets of dose-response 
data, those values of a,, 

Details of the various steps 
of the fitting procedure, 
together with the final results 

Output in same form as 
input to FINCALC 

b,, a,, b, and L which give 
the best fit of the 
Gtransformation 

To estimate the final Depending on the code None 
quantities required from numbers used: 
comparison of each pair of (a) values and s.e.*s of Ou 
sets Ofdose-resPonse data and IA,. Also the value and 

s.e. of K,, on the 
assuniption that 3.. is much 
greatcr than one. 
(b) values and s.e.’s of K, 
and 0 1  y,. 
(c) values and s.e.’s of K,. 
Also the values and s.e.’s of 
K., if the antagonism is 
pseudo-irreversible. 
(d) value of the potency ratio. 
with upper and lower 
fiducial limits-provided that 
the proper theoretical value 
of I has been entered. 

Footnote: t represents Students t-factor and 
C50 is the concentration of agonist which produces a half-maximal response. 
For the meanings of the other symbols see footnote to Table 1. 

Each program, except FINCALC, has two outputs. One of these gives information 
about the results of various steps carried out by the program, togetherwith a brief 
statement of the final results. The other output is merely a collection of numerical 
data in a form which is suitable for use as input for the next program. Each program 
may be applied individually to sets of data, but the more usual technique is for the 
input data to be entered once only and processed in turn by each of the programs. 
The actual form of the input data will of course depend on whether the data are suit- 
able for direct application of program SLFIT or require initial modification by use of 
the program RMOD. Another point worth noting is that some quantities in the data 
input may be irrelevant. For example a value for the concentration of antagonist is 
required in the input in spite of the fact that in some examples no antagonist may have 
been used! In such cases any “dummy” number may be entered since if the correct 
code numbers are inserted the computer will read the number but will not use it. The 
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same comment applies to the theoretical value o f t  which is required only for the 
estimation of the fiducial limits of a potency ratio. 

An example of results obtained by the use of these programs is given in Appendix 3. 

DISCUSSION 

The basic principles of the L-transformation have been discussed in the previous 
sections. It can be used to fit curves to individual sets of dose-response data obtained 
on different pieces of tissue, and therefore to summarise such data. However its main 
use is to compare pairs of sets of dose-response data obtained on the same piece of 
tissue, so as to obtain useful information such as potency ratios or apparent affinity 
constants. Estimates of standard errors or of fiducial limits of these quantities can also 
be made. It has been shown that if two sets of dose-response data have been obtained 
for drugs acting on the same receptors in the same piece of tissue then the values of L 
should not differ significantly if the principles, on which the use of the L-transforma- 
tion is based, are correct. It would be possible to fit the L-transformation simul- 
taneously to more than two sets of data with a single common value of L. However 
this does not seem to be worthwhile since the stimulus-response relation of the tissue is 
likely to change with time and this is likely to invalidate the comparison of sets of data 
obtained on a single piece of tissue at widely different times. 

One point which has not so far been mentioned is that in fitting the L-transformation 
to sets of dose-response data it has been assumed that the variance of response is 
independent of the magnitude of the response (i.e. the responses are homoscedastic). 
The same assumption was made by Parker & Waud (1971). Small deviations from 
homoscedasticity are unlikely to modify the results obtained to any appreciable 
extent, especially if the L-transformation fits the experimental results fairly well. The 
preliminary use of a distortion function may either increase or decrease any deviation 
from homoscedasticity but this too is likely to be of little practical importance. 

The production of very steep log dose-response curves by drugs acting on some 
tissues may be due to the existence of a complex relation between the pharmacological 
stimulus and the response of the tissue. An alternative explanation could be that more 
than one molecule of agonist interacts with each receptor site. Only detailed experi- 
ments can decide between these two possibilities for any chosen example of response, 
tissue and drug. 

A major advantage of the techniques outlined here is that the basic principles are 
fairly simple and widely applicable. Also the application of the programs requires 
only that suitable instructions be fed into the computer along with the appropriate 
code numbers and experimental data. The output from the computer should be 
examined to see whether, for any single set of data, the mean sum of squares about 
regression differs significantly from the mean sum of squares within groups. It should 
also be examined to see whether the individual values of a and L, obtained for each set 
of a pair of sets of data, differ significantly. Besides these tests, the magnitude of the 
standard error of each of the final quantities estimated provides a guide to the value of 
the result. If several estimates are made of some quantity, such as an affinity constant, 
then the individual values and their standard errors enable one to decide whether the 
results from different tissue samples are significantly different. If they are not, then 
suitably weighted mean values and standard errors can be estimated. 

The main aim of the authors, when preparing the programs described here, has been 
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to make them functional. Very little attention has been paid to the efficiency of the 
programs in terms of computation time. As a rough guide the entire series of calcula- 
tions shown in Table 2 requires about 5 s for each pair of dose-response curves on the 
I.C.L. 1906A computer. Copies of these programs (written in 1900 series ALGOL) 
will be made available on request. 
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Appendix 1 

y = a + b x  
where y = l/[r + L] and x = [l/Cd. 
For any chosen value of L, a weighted linear regression of y on x gives the corresponding best 
values of a and b. The weighting factor for such a regression can be shown to be [r + L]’. The 
value of L is initially set equal to zero and moved stepwise in that direction which results in a reduc- 
tion of the sum of squared deviations about regression, until an approximate minimum sum has 
been reached. This trial and error method gives only approximate values of a, b and L which can 
be further improved. 

Since the L-transformation can be arranged so that r is a function of the adjustable constants a, 
b and L, 

L .. .. .. .. Al, 1 r =  -- 

the best values of the adjustable constants and estimates of their variances and covariances can be 
obtained by using the general method for fitting non-linear regressions, described by Snedecor & 
Cochran (1971). This method involves the application of Taylor’s theorem to equation A1 and 
iterative modification of the initial values of the adjustable constants. 

The L-transformation can be written as 

b 
a + ( A )  

Appendix 2 
The technique described in Appendix 1 can be extended to obtain the best values of the adjust- 

able constants required to fit the L-transformation simultaneously to two(or more)sets of data, with 
a common value of L. 

Application of the program SLFIT to each set of experimental data gives the values of a, b and 
L for each set. The trial and error method described in appendix 1 is again used to obtain appro$- 
mate values of a,, bl, a,, b, and L which produce an approximate minimum sum of squared devia- 
tions of observed responses from the theoretical responses. In this case the summation is over both 
sets of data and the initial value of L is taken as the mean of the two values of L obtained for the 
separate sets of data. These approximate values of a,, b,, a,, b8 and L can then be improved by use 
of Taylor’s theorem and iterative modification. 

The relation between the adjustable constants (obtained by fitting the L-transformation simul- 
taneously to the two sets of dose-response data) and the various derived quantities which may be 
required from the data, are summarized in Table 1. Approximate estimates of the variances of 
these derived quantities are obtained by applying the standard statistical formula which relates the 
variance of a function to the variances and covariances of its components. 

Appendix 3 

heptyltrimethylammonium from the following data: 
Set (a) (before treatment of the tissue with dibenamine) 

Set (b) (after treatment of the tissue with dibenamine) 

Parker & Waud (1971) used their logistic method to estimate the dissociation constant of 

Agonist concentrations ( p ~ )  4 10 20 40 100 200 
responses 3 5 8 11 15 14 

Agonist concentrations ( p ~ )  10 20 40 100 200 
responses 2 4 7 8.5 10 
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The experimental data shown above was fed into the series of programs described in Table 2 of 

this paper, without use of the preliminary RMOD program, and gave the following results: 

Fraction of receptors occupied by the irreversible antagonist 
Kn = 1.585 x lo4 litre mol-l; s.e. = 1.250 x 10' litre mol-l 

= 0.573; s.e. = 0-117. 
These values may be compared with those estimated from the same data by Parker and Waud, 

KA = 1/58-15 p~ = 1.720 x lo4 litre mol-l 
which were 

and fraction of receptors occupied by the irreversible antagonist = 0564. 
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